
Unix: File Access Primitives

Ref: Chapters 1 and 2 of [HGS].

Some facilities in Unix:

• Tree structured file system.

– Root directory.

– Absolute and relative path names.

– File protection bits.

• Shell (command interpreter).

• Creation of multiple processes.

• Input/output redirection.

– Any of stdin, stdout stderr can be
redirected.

– Syntax depends on the shell used. (Exam-
ples to be presented in class.)

• Pipes: Allow the output of one process to
become the input to another.

11–1

Examples:

% ls -l | wc -l

% who | grep smith | wc -l

Kernel:

• Constantly resides in memory.

• Controls and monitors processes and
file accesses.

• User processes request kernel services through
system calls.

File Access Primitives:

• So far: File access using <stdio.h>.

• For programming at the system level,
system calls are needed.

• System calls provide primitives for file access.

• The <stdio.h> library is built on top of
system calls for file access.

11–2

File Descriptors:

• Different from file pointers (variables of type
FILE *) used in <stdio.h>.

• File descriptors are of type int.

• Kernel refers to all open files using
file descriptors.

• File descriptors 0, 1 and 2 correspond to stdin,
stdout and stderr respectively.

• Better to use their symbolic names in pro-
grams:

STDIN_FILENO

STDOUT_FILENO

STDERR_FILENO

• System calls to open files return file descrip-
tors which must be passed to other system
calls.

11–3

• Header files generally needed:

<unistd.h>

<sys/types.h>

<sys/stat.h>

<fcntl.h>

System call open:

First form:

int open (const char *name,

int oflag);

• First form used for opening an existing file.

• Returns file descriptor if successful; otherwise,
returns -1.

• name: Name of file to be opened.

• oflag: File access method.

11–4

Examples for access method: (These are
symbolic constants defined in <fcntl.h>.)

O_RDONLY

O_WRONLY

O_RDWR

O_APPEND

O_CREAT

O_TRUNC

Note: The oflag parameter for open is usually
the bitwise-or of some of the above constants.

Sample program segment:

int fd;

.

.

fd = open ("/usr/smith/file.c",

O_WRONLY | O_TRUNC);

if (fd == -1) {

fprintf(stderr, "Open failed.\n");

exit(1);

}

11–5

Second form:

int open (const char *name,

int oflag,

mode_t mode);

• Second form used for creating a new file.

• Returns file descriptor if successful; otherwise,
returns -1.

• Parameters name and oflag as before.

• mode: Specifies permissions for the new file.
(More on this later.)

Sample program segment:

#define MODE 0644

int fd;

.

.

fd = open ("/usr/smith/file.c",

O_RDWR | O_CREAT, MODE);

11–6

if (fd == -1) {

fprintf(stderr, "Open failed.\n");

exit(1);

}

System call creat:

int creat (const char *name,

mode_t mode);

• Can be used for creating a new file. (Using
open is generally preferred.)

• Returns file descriptor if successful; otherwise,
returns -1.

• name and mode: As in open system call.

Note: The call

fd = creat("file", 0644);

is equivalent to:

fd = open("file",

O_WRONLY | O_CREAT | O_TRUNC,

0644);

11–7

System call close:

int close (int filedes);

• Used to close the file referred to by the de-
scriptor filedes.

• Returns 0 if successful; otherwise, returns -1.

• Although all open files are automatically closed
when a program exits, it is a good idea to close
the files explicitly.

Sample program segment:

int fd;

.

.

/* Call to open etc. */

.

.

if (close(fd) == -1) {

fprintf(stderr, "Close failed.\n");

exit(1);

}

11–8

System call read:

ssize_t read (int fd,

void *buf,

size_t n);

• Reads n bytes from the file given by the de-
scriptor fd into memory starting from the lo-
cation given by buf.

• The file given by the descriptor fd must be
open for reading.

• Normally, returns the number of bytes read.
Returns 0 if EOF occurs before any bytes are
read. Returns -1 if an error occurs.

Sample program segment:

#define SIZE 25

int fd; int temp; char buf[SIZE];

.

. /* Call to open etc. */

.

temp = read(fd, buf, (size_t) SIZE);

11–9

if (temp == -1) {

fprintf(stderr, "Error in read.\n");

exit(1);

}

if (temp == 0) {

.

. /* Code for handling EOF. */

.

}

System call write:

ssize_t write (int fd,

const void *buf,

size_t n);

• Writes the contents of n bytes starting from
the location given by buf into the file given
by the descriptor fd.

• The file given by the descriptor fd must be
open for writing (or appending).

11–10

• Normally, returns the number of bytes written.
Returns -1 if an error occurs.

Sample program segment:

#define SIZE 25

int fd; int temp; char buf[SIZE];

.

. /* Call to open etc. */

.

temp = write(fd, buf, (size_t) SIZE);

if (temp == -1) {

fprintf(stderr, "Error in write.\n");

exit(1);

}

Program example: Handout 11.1.

11–11

System call lseek:

off_t lseek (int fd,

off_t offset,

int sflag);

• Similar to fseek of stdio.h, except that
lseek uses a file descriptor while fseek uses
a file pointer.

• The file given by the descriptor fd must be
open for reading or writing.

• Parameter offset specifies the number of
bytes for moving. (Note that offset may
be negative.)

• sflag can be any of the following three con-
stants.

– SEEK_SET : offset specified relative to
the beginning of the file.

– SEEK_CUR : offset specified relative to
the current position.

– SEEK_END : offset specified relative to
the end of the file.

11–12

• Normally, returns the new position in the file.
Returns -1 if an error occurs.

Sample program segment:

int fd; off_t offset, new_pos;

.

. /* Call to open etc. */

.

new_pos = lseek(fd, offset, SEEK_END);

if (new_pos == -1) {

fprintf(stderr, "Error in lseek.\n");

exit(1);

}

Reading assignment: Program example on
pages 24–25 of [HGS].

11–13

System calls unlink and remove:

int unlink (const char *pathname);

int remove (const char *pathname);

• Both unlink and remove eliminate the file
specified by pathname.

• Originally, only unlink was in the list of sys-
tem calls; ANSI C standard added remove.

• Return value: 0 if successful and -1 otherwise.

Reporting Errors:

• Purpose: To provide more information when a
system call reports error.

• Header file <errno.h> and global int vari-
able errno.

• System assigns a value to errno when an er-
ror occurs.

• Examples of errno values: EACCES, EBADF,
ENOENT.

11–14

• Can determine the error given the value of
errno. (See Appendix A of [HGS].)

• Library function perror available to
print error message:

void perror (const char *msg);

• Call to perror prints to stdout the message
string along with an error message correspond-
ing to the value of errno.

Sample code segment: Assume that the file
"/usr/nofile" does not exist.

int fd;

fd = open("/usr/nofile", O_RDONLY);

if (fd == -1) {

perror("Error");

exit(1);

}

Output:

Error: No such file or directory

11–15

Notes:

• The value of errno is not reset when a system
call is successful.

• Value of errno must be used only when a
system call returns a value indicating error.

11–16

