
CSI 402 – Program III

Administrative Information:

• Deadline: 11 PM, Monday, April 3, 2006.

• Two parts, but just one makefile.

• Two or more C source files for each part.

• README file (by 10 PM, Mar. 21, 2006):

~csi402/public/prog3/prog3.README

Part (a): (Weightage: 60%)

• Goal: Linker for TMIPS programs.

• Command line:

% p3a configfile

% p3a configfile -o loadmodule

Example of configuration file:

3 200

part1.obj

part2.obj

part3.obj

1

TMIPS assembly source file:

.extdef x1

.extref y1

.text

m1: lwa $5,x1

swa $5,y1

hlt

.data

x1: .resw 1

Corresponding object module:

H m1

D x1 3

T 1745158147

T 1812267008

T 0

T 0

M 0 m1

M 1 y1

2

Important note: The load module is a binary file.

Format of load module:

Z S ...M1 Mk

Notes:

• Z is a 2-byte unsigned integer which gives the size
of the load module.

• S is a 2-byte unsigned integer which gives the
starting address of the load module.

• M1 represents the object code for the first module,
. . ., Mk represents the object code for the last
module.

Suggestion: Use the outline given in Handout 7.2
from the lecture notes to implement Part (a).

3

Errors to be detected:

• Not enough room in memory for load module.

• Address resolution leads to an address larger than
65535.

• Undefined or multiply defined symbol.

• Usual command line errors.

• One of the of the object module files can’t be
opened.

Additional Notes:

• Assume that the file names mentioned in the con-
figuration file are of length at most 15 characters.

• Assume that the External Symbol Table (EST)
to be constructed by the linker has at most 50
entries.

• You may use any data structure to implement ta-
bles such as ERT, EDT and EST.

• The H-record does not contain the size of the
corresponding object module; the program must
compute the size.

4

• Each module name is an external symbol; if two
object modules have the same name, your pro-
gram produce a “multiply defined symbol” error
and stop.

Part (b): (Weightage: 40%)

Goal: To implement a simple version of the Unix
tar command.

Command line:

% p3b -c archive infile1 . . . infilek

% p3b -x archive

Notes:

• No. of input files may range from 1 to 255.

• Input files may be text files or binary files.

• The archive is a binary file.

• The size of each input file is at most 2
32

− 1.

5

Format of archive:

N I1 ... IK ...B1 BK

Notes:

• N represents one byte which gives the number of
files in the archive.

• I1 represents information about the first file, . . .,
Ik represents information about the last file.

• B1 represents the bytes of the first file, . . ., Bk
represents the bytes of the last file.

Information about each file:

L S Z

• L is one byte which gives the number of characters
in the file name. (This does not include the byte
for the ’\0’ character.)

• S is a string representing the file name. (The
length of S was specified in L.)

6

• Z represents an unsigned 4-byte integer which gives
the size of the file.

Errors to be detected:

• Usual command line errors.

Suggestion: Study the following material from the
text by Haviland, Gray and Salama.

• Chapter 2 (functions such as open, close, read,
write and lseek).

• Pages 53–57 of Section 3.3 (stat structure and
functions such as stat and fstat).

Other notes about Part (b):

• Be careful about the number of files that are open
simultaneously.

• If you create a file in your program and want to
delete it before stopping your program, use the
remove (or unlink) system call (see Chapter 2
of Haviland et al.).

7

