
Macros & Macro Processors (continued)

Ref: Chapter 4 of [Beck].

Nested macro calls:

Example:

ADDVAL MACRO &X

LDA DEPOT

ADD &X

STA DEPOT

MEND

ADD3 MACRO &P,&Q,&R

ADDVAL &P

ADDVAL &Q

ADDVAL &R

MEND

Reading assignment: Figure 4.11 on page 200

of [Beck].

10–1

• Nested calls much more common than nested
definitions.

• The nesting level can be larger than 1.

• Macro processor that handles nested calls can
be implemented using recursion.
(See Handout 10.1).

Parameter concatenation:

Example:

SUM MACRO &P,&Q,&R

CLEAR A

LDA &P

ADD &Q

ADD &R

MEND

• Consider the following calls to the above macro:

SUM XA1,XA2,XA3

SUM XB1,XB2,XB3

SUM XC1,XC2,XC3

10–2



• Parameters in calls differ only by one
character.

• Calls can be simplified if parameters can be
“parts” of labels.

Example: The SUM macro can be redefined as
follows (using notation from [Beck]).

SUM MACRO &L

CLEAR A

LDA X&L->1

ADD X&L->2

ADD X&L->3

MEND

• The symbols ’&’ and ’->’ mark the extent
of the dummy parameter.

• Advantage: The calls can now be simplified:

SUM A

SUM B

SUM C

10–3

• Disadvantage: Program is harder to
understand.

Generation of unique labels:

• Labels are generally avoided in macro bodies.

• LC-relative addressing used to avoid using
labels.

• Use of LC-relative addressing makes
modifications cumbersome.

• This difficulty can be overcome with help from
the macro processor.

• Use special labels in macros (e.g. labels start-
ing with ’$’).

Example: See Handout 10.2.

• In each call, the macro processor generates a
unique prefix to be added to each label.

• Note: In SIC/XE programs, avoid using labels
starting with ’$’, except for macro bodies.

10–4



Conditional macro expansion:

• Recall: Conditional macro facility in C.

• Sometimes called “conditional assembly”.

• SIC/XE assembly language provides the fol-
lowing forms of conditional expansion.

IF condition

.

.
ENDIF

IF condition

.

.
ELSE

.

.
ENDIF

• IF, ELSE, ENDIF: New pseudo-ops.

• condition: Boolean condition that can be
evaluated at the time of macro expansion.

10–5

Examples: See Handout 10.3.

Note: To check whether or not an actual pa-
rameter is specified, compare dummy parameter
with the null character.

Example:

MAC MACRO &X,&Y,&Z

IF (&Y EQ ’’)

.

.

ENDIF

.

.

MEND

When the above macro is invoked as

MAC L1,,L3

the lines between IF and ENDIF will be included
in the expansion.

10–6



Macro-time variables:

• Any symbol whose name begins with & and
which is not a dummy parameter is macro-
time variable.

• All such variables are initialized to 0.

• The SET pseudo-op can be used to assign a
value to such a variable. (The operand of the
pseudo-op may be another expression that can
be evaluated at macro expansion time.)

• Typical use: To remember the result of an
expression evaluated by the macro processor.

Example: See Handout 10.4.

Implementing conditional expansion:

• No major changes needed to read in a macro
body.

• In the expansion phase, Boolean expressions
need to be evaluated.

• Nested IF statements can be handled using a
stack.

10–7

• Macro-time variables can be stored along with
their values in a symbol table. (Entries in the
table are modified when SET pseudo-ops are
processed.)

Keyword macro parameters:

• Alternative to specifying parameters by
position.

Example: Consider the macro DOIO.

MACRO DOIO &DEV,&BUF,&CODE

.

.

MEND

The macro can be invoked as follows:

DOIO A7,LOC,R

It can also be invoked as follows:

DOIO DEV=A7,BUF=LOC,CODE=R

10–8



• The second form is convenient if it is hard to
remember the order of the parameters.

• The second form is also useful when the macro
has a large number of parameters and each
call needs to specifies only a few. (The other
parameters are assumed to be omitted.)

• Implementing keyword parameters is straight-
forward: macro processor can set up the ar-
gument table from the call.

10–9


