
Directories and File Systems

Ref: Chapter 4 of [HGS].

Directories:

• Directories in Unix are also files. (However,
they shouldn’t be used like ordinary files.)

• Each directory entry stores the file name and
the Inode number of the file.

• Inode

– Data structure that stores information about
the file.

– The stat system call returns the informa-
tion from the Inode. (More later.)

• Older versions of Unix:

– File name restricted to 14 characters.

– Directory entries are of fixed length.

13–1

• BSD 4.3 and later versions of Unix:

– File names may have up to 256 characters.

– Each directory entry has Inode number, the
length of file name (1 byte) and the actual
file name (string).

– Directory entries are of variable length.

• Caution: Different versions of Unix may imple-
ment directories differently. It is best to use
system calls to deal with directories.

Permission bits for directories:

• Read permission: Allows a user to list the files
in the directory.

• Write permission: Allows a user to create new
files and delete files in the directory.

• Execute permission: Allows a user to cd to
the directory.

13–2



Sticky bit and directories:

• Why?

– Some directories (e.g. /tmp) allow any user
to create files. (The files are periodically
removed by the root.)

– The permission bits for such directories are
read, write and execute for everyone.

– However, a normal user should not be able
to delete or rename files owned by others.

• If the sticky bit for a directory is set, then a file
in the directory can be removed or renamed by
a normal user only when the user owns the file.

Directory related system calls:

• Header file: <dirent.h>

• Each directory entry is of type struct dirent

with two data members:

ino_t d_ino; /* Inode number. */

char d_name[]; /* File name. */

13–3

• If the value of d_ino is 0, then the entry does
not correspond to a valid file.

• The string d_name is null terminated.

System call mkdir:

int mkdir (const char *pathname,

mode_t mode);

• Creates a directory with name given by pathname.

• The permission bits for the created directory
combine mode with umask.

• The created directory is initialized with two
entries corresponding to "." and "..".

System call rmdir:

int rmdir (const char *pathname);

• Removes the specified directory.

• A directory is removed only if it is empty (i.e.,
the only entries in the directory are for "."

and "..").
13–4



System call opendir:

DIR *opendir (const char *pathname);

• Opens the specified directory.

• Note: Returns a pointer of type DIR *. The
return value is NULL if an error occurs.

System call closedir:

int closedir (DIR *dirptr);

• Closes the directory specified by the the pa-
rameter.

• Returns 0 if successful and -1 otherwise.

System call readdir:

struct dirent *readdir (DIR *dirptr);

• Returns the next entry from the directory spec-
ified by the the parameter.

13–5

• Note: Returns a pointer of type

struct dirent *

The return value is NULL if an error occurs or
when there are no more entries in the direc-
tory.

System call rewindddir:

void rewinddir (DIR *dirptr);

• Goes back to the beginning of the directory
specified by the parameter.

• The next call to readdir will return the first
entry in the directory.

Program example: Handout 13.1.

13–6



System call chdir:

int chdir (const char *path);

• Changes the working directory to the one spec-
ified by the parameter path.

• Fails (and returns -1) if the parameter is not
a valid directory or the user does not have
execute permission for the directory.

System call getcwd:

char *getcwd (char *dname,

size_t size);

• Returns a pointer to the current directory path
name; the path name is also copied into the
array given by dname.

• Array dname should have size at least one
more than the value of size.

Program example: Handout 13.2.

13–7

System call ftw:

int ftw (const char *path,

int (*func)(), int depth);

• Header: <ftw.h>.

• ftw: File tree walk.

• Performs a (recursive) traversal of the direc-
tory tree rooted at the path name given by
path.

• depth: Represents a limit on the number of
file descriptors that ftw can use.

– Value of 1 for depth will work, but may be
too slow.

– The value of depth can’t be too large.
(Each process may use only a limited num-
ber of file descriptors.)

13–8



• For each file visited during the traversal, the
user defined function func will be called with
three parameters:

int func (const char *name,

const struct stat *sptr,

int type);

• name: Name of the file.

• sptr: Pointer to the stat structure for the
file.

• type: Possible values are FTW_F, FTW_D,
FTW_DNR, FTW_SL, and FTW_NS. (See page 75
of [HGS] for the meanings of these constants.)

• The tree traversal continues if the user de-
fined function returns the zero value; other-
wise, ftw terminates the traversal.

Reading assignment: Program example on
pages 75–76 of [HGS].

13–9

Structure of an Inode:

• Each file has an Inode which contains infor-
mation about the file. (The stat system call
obtains information about a file from the file’s
Inode.)

• Size of Inode: 64 or 128 bytes on many Unix
systems.

• Each Inode contains

– Information for the stat structure.

– 12 direct pointers to data blocks.

– One, two and three level indirect pointers
to blocks.

• For each open file, the kernel keeps a copy of
the corresponding Inode in memory.

13–10



Structure of a Unix file system:

• Disk divided into partitions; each partition is
a “file system”.

• Each file system contains:

– A boot block.

– A super block which contains information
about the state of the file system (e.g. the
size of the file system, information regard-
ing free blocks).

– A sequence of Inodes.

– A sequence of data blocks.

More on hard and symbolic links:

– Class discussion.

13–11


