
Assemblers

Ref: Chapter 2 of [Beck].

Basic function:

Assembler
Source Machine code

• Precursor to compilers.

Conventions in SIC:

• Lines starting with ’.’ are comments.

• Fields in a statement: label (optional), op-
code, operands (if needed) and comment
(optional).

• Assembler directives (or pseudo opcodes): START,
END, BYTE, WORD, RESB, RESW, BASE,
NOBASE.

2–1

• Indirect addressing indicated by ’@’:

JEQ @RADDR

• Immediate operands are indicated by ’#’:

LDA #50

• BASE directive used to indicate base + dis-
placement mode.

LDB #LEN

BASE LEN

• NOBASE directive ends base + displacement
mode. (The BASE directive is in effect for the
segment between BASE and NOBASE direc-
tives.)

• 4-byte instruction specified by preceding the
opcode with ’+’.

+LDA MEM

2–2



Assembling a SIC program:

Note: Line numbers shown below are for con-
venience; they are not part of the program.

(00) MCHRS START 1000

(01) FIRST LDX ZERO

(02) MOVECH LDCH STR1,X

(03) STCH STR2,X

(04) TIX ELEVEN

(05) JLT MOVECH

(06) RSUB

(07) STR1 BYTE C’TEST STRING’

(08) STR2 RESB 11

(09) ZERO WORD 0

(10) ELEVEN WORD 11

(11) END FIRST

Observations:

• Use of Location Counter (LC).

• Two pass assembly (to allow forward referenc-
ing).

• Symbol Table (ST) used for labels.

2–3

Summary of actions:

Pass 1:

• Assign addresses to instructions using LC.

• Build Symbol Table.

• Process pseudo opcodes.

• Produce partial machine code. (This may also
be done in Pass 2.)

Pass 2:

• Complete assembly of instructions (resolving
forward references).

• Output object program and listing to appro-
priate files.

• Generate information for linker (to be seen
later).

2–4



Pseudocode for Passes 1 and 2:

• Figures 2.4(a) and 2.4(b) of text: Reading
assignment.

Tables Used:

(A) Symbol Table:

• Each entry has a symbol and its LC value.

• Searched in both Pass 1 and Pass 2.

• Dynamic table (grows in Pass 1).

• Efficient implementation essential.

(B) Machine Opcode Table (MOT):

• Each entry has a mnemonic, binary opcode
and instruction length.

• Must be searched in Pass 1.

• Static table (contents don’t change).

2–5

Format of object code:

• Header record: Contains program name, start-
ing address and length (in bytes).

• Text record: Contains starting address for the
code in the record, length of the code and the
code itself.

• End record: Contains the address of the first
executable instruction in the object program.

Modifications for SIC/XE:

(1) Relative Addressing: Can be used only
with 3-byte instructions. (Assembler must set b
and p bits appropriately.)

• Instructions may use base-relative or PC-relative
modes.

• If BASE directive is in effect, assembler uses
that mode; otherwise PC-relative mode is used.

Exception: PC-relative mode may be used even
when BASE is in effect, if the required displace-
ment is negative.

2–6



Example:

LDB #LEN

BASE LEN

.

. <---- SIC/XE code

.

JEQ NEXT

STA SAVE

NEXT LDA VAL

.

. <---- SIC/XE code

.

LEN RESW 1

SAVE RESW 1

• For the JEQ instruction, PC-relative address-
ing is used even though BASE directive is in
effect.

• For the STA instruction, base-relative address-
ing is used.

2–7

Note: Assembler produces an error message if
neither base-relative nor PC-relative modes can
be used. (How can this happen?)

Computing Displacement:

• PC-relative: Displacement may be positive or
negative. (Examples to be discussed in class.)

• Base-relative: Idea similar to PC-relative mode;
displacement cannot be negative.

Extended Addressing (3-byte Instructions):

• Immediate mode: Set the i bit to 1, n bit
to 0 and store the operand itself in the 12-bit
displacement field.

• Indirect mode: Set the i bit to 0, n bit to 1;
store the displacement of the operand in the
12-bit field.

2–8



Handling 4-byte Instructions:

• Opcode has the ’+’ prefix to indicate 4-byte
format.

• The e bit must be set to 1.

• Bits b and p are 0.

• The address (or immediate operand value) is
stored in the least significant 20 bits.

• The i and n bits are set appropriately.

2–9


