
Final Remarks on Loaders/Linkers

Linking C programs with libraries:

• Functions from <stdlib.h> (e.g. malloc,
free, exit) are linked automatically.

• Functions from <stdio.h> (e.g. fprintf,
fscanf) are linked if <stdio.h> is included
as a header.

• If functions from other libraries (e.g. <math.h>)
are used, then the corresponding header must
be included and the library must be specified
as part of the gcc command.

Example: Suppose a program (say prog.c)
uses the function sqrt from the math library.

(a) The program must include <math.h>.

(b) Command for producing load module:

% gcc prog.c -lm

8–1

Notes:

• The linker searches the libraries only after ob-
taining information about all the functions de-
fined in the various files.

• This allows a user to redefine a library func-
tion. (If this is really necessary, it must be
done with great care.)

Dynamic Linking:

• Static linking: Done before execution.

• Dynamic linking: Done during execution.

• Dynamic linking is useful when a program calls
only a few of a large collection of routines from
a library (e.g. a library containing error han-
dling routines).

• Advantage: The size of the load module is
smaller.

• Disadvantage: Runtime overhead.

8–2

Steps used in Dynamic Linking:

1. A user program calls a routine (say sqrt)
which is not part of the load module.

2. The runtime system makes a service request
to the OS to load the requested function. The
request is handled by a part of the OS called
the “Dynamic Loader” (DL).

3. DL checks if the requested routine is already
in memory; if not, loads the routine at an ap-
propriate part of memory. DL also starts the
execution of the routine.

4. When the routine completes, it returns control
to DL. DL decides whether to leave the routine
in memory or reclaim the memory.

5. DL passes the control back to the user
program.

8–3

Notes:

• Binding: Association of an attribute value with
a name.

• Binding can happen at compile time, at load
time or at execution time.

• With static linking, the binding between a func-
tion name and its address happens at load
time (before execution begins). For a given
execution, this binding does not change with
time (static binding).

• With dynamic linking, the binding between a
function name and its address may happen at
execution time; this binding may also change
with time (dynamic binding).

Bootstrap Loader:

Issue: How to load the very first program into
memory.

8–4

• A small part of memory is implemented as
Read Only Memory (ROM) which contains a
program. (This program is an absolute loader.)

• When power is turned on (or when the system
is rebooted), the ROM program begins to ex-
ecute. The program reads a block of bytes
from a specific device (e.g. hard disk, floppy
disk).

• The block (called the “boot block”) read in by
the ROM program contains another program
which can load a larger program.

• Thus, the program in the boot block loads a
larger program, ..., and so on, until the OS
itself is loaded.

• This sequence of loading larger and larger pro-
grams until the OS is loaded is called boot-
strapping.

• Systems also perform “Power on self-tests”
during booting.

8–5

Note: Some people refer to the ROM program
as the bootstrap loader; others refer to the pro-
gram in the boot block as the bootstrap loader.

Reading Assignment: Figure 3.3 of [Beck].

Notes about the program in Figure 3.3:

• It is a bootstrap loader (i.e., a simple abso-
lute loader) for SIC/XE (that can be stored in
ROM).

• It reads bytes from device F1 (hex) and loads
the bytes from address 80 (hex).

• The device returns 04 (hex) when EOF occurs.

• At that time, the program causes a jump to
location 80 (hex) to start the program that
was just loaded.

8–6

