
Loaders and Linkers

Ref: Chapter 3 of [Beck].

Linking: Combining two or more object pro-
grams into a single unit (“load module”).

Loading: Bringing an object program (load
module) into memory for execution.

Relocation: Modifying an object program so
that it can be loaded from a location different
from the one originally specified.

Loader:

• Brings an object program into memory.

• Starts its execution.

• Two forms: Absolute and Relocating
(or Relative).

Absolute Loader: Easy to design; need to know
the load module format.

6–1

Load module format – Example:

Header record

Text record

Text record

.

.

.

Text record

End record

(a) The Header record contains: Program name,
Start address and Program length.

(b) Each Text record contains: Start address,
Length, Object code and Checksum.

(c) The End record contains: Start address.

Absolute Loader outline: Handout 6.1.

6–2



Checksum:

• A simple error detection scheme.

• Each text record contains a checksum value
(e.g. sum of all the bytes in that record).

• Loader computes checksum as the bytes in a
text record are copied into memory.

• If the computed checksum does not match the
stored value, the loader retries the loading pro-
cess for the text record.

• If the checksums match, we can’t be sure that
the loading process is error-free.

• Using a checksum for each text record reduces
the amount of code to be reloaded due to an
error.

• Checksum-like schemes commonly used in hard-
ware and software (e.g. parity bits in memory
and checksums in network packets).

6–3

Program Relocation (review):

• Assembler sets start address at zero.

• Fills in relative addresses while assembling in-
structions.

• Produces a Modifier record for each instruc-
tion which needs relocation.

• Each modifier record contains starting byte
address and the length of the address field to
be modified.

• Modifier records follow the text records in the
load module format.

• For SIC, all instructions except RSUB need
modifier records.

• For SIC/XE, only 4-byte instructions need
modifier records.

Relocating Loader outline: Handout 6.1.

6–4



Relocation bits:

• Alternative to modifier records.

• Useful for machines such as SIC where the
number of modifier records may be large.

• Use one bit for each word of object code; bit
value = 1 if relocation is needed and 0 other-
wise.

• Include the relocation bits in the text record.

• Each text record contains starting address, length,
relocation bit mask and the object code.

Example: To be presented in class.

• Without modifier records, the size of object
code will be significantly smaller.

• The outline for relocating loader needs to be
revised.

Exercise: Revise the outline for the relocat-
ing loader to allow relocation masks instead of
modifier records.

6–5

Separately assembled modules (review):

• Assembler directives EXTDEF and EXTREF.

• All instructions referencing external symbols
use 4-byte format.

• Assembler produces External Definition Table
(EDT) and External Reference Table (ERT)
for each module.

• Each entry of EDT contains a symbol and its
(relative) address.

• Each entry of ERT contains a symbol and the
(relative) addresses where the address of the
symbol is needed.

Linking: A simplified view

• The EDT for a module gives the external sym-
bols that are provided by the module.

• The ERT for a module gives the external sym-
bols that are needed by the module.

• Linker must ensure that each external symbol
needed by a module is provided by another.

6–6



Example: Handout 6.2.

Steps involved in linking:

1. Obtain load point for each module.

2. Combine the separate EDTs into a single EDT
(called “Combined EDT”).

3. Obtain the “External Symbol Table” from the
Combined EDT by adding to each relative ad-
dress, the load point of the corresponding mod-
ule.

4. Now, the External Symbol Table can be used
to resolve each external reference.

Example: To be presented in class.

6–7


