
System Calls for Processes

Ref: Chapter 5 of [HGS].

Process:

• A program in execution.

• Several processes are executed concurrently
by the scheduler.

• Each process has a unique ID (called process
ID or pid).

• When a process P is created, there is a
parent process for P. (Note: Process with pid
zero is its own parent.)

Useful Shell commands:

• ps: Gives the list of processes that are cur-
rently running.

• kill: Command to kill one or more pro-
cesses.

14–1

Example: Suppose the ps command shows that
processes with IDs 1274 and 1297 are running.
To kill these processes the command is:

% kill -9 1274 1297

System calls for obtaining pid:

pid_t getpid (void);

pid_t getppid (void);

• Headers: <sys/types.h> and <unistd.h>.

• The type pid_t is usually unsigned long.

• getpid: Returns the pid of the process.

• getppid: Returns parent’s pid.

• No error exit for either function.

Sample code segment:

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

14–2

int main(void) {

printf("Pid = %ld\n", getpid());

printf("Parent’s Pid = %ld\n",

getppid());

return 0;

}

System call fork:

pid_t fork (void);

• Headers: <sys/types.h> and <unistd.h>.

• Creates a new process by copying the parent’s
memory image.

• Both processes continue to execute after the
call to fork.

• Returns zero to child and the pid of the child
to the parent.

• Another system call (one from the family of
exec system calls) is used to make parent and
child execute different programs.

• Returns -1 in case of failure.

14–3

(Bad) Example:

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

.

.

int x = 0;

fork();

x = 1;

.

.

• After the call to fork, there are two
independent processes.

• Each process has its own location for the
variable x.

Better Example: Handout 14.1.

14–4

Failure of fork call:

• The total number of processes in the system
exceeds a preset limit or the total number of
processes for the user exceeds a preset limit.

• No child process is created when fork fails.

• The value of errno is EAGAIN.

System calls getuid and geteuid:

pid_t getuid (void);

pid_t geteuid (void);

• Headers: <sys/types.h> and <unistd.h>.

• In addition to pid, each process has a (real)
user id and an effective user id.

• getuid: Returns the (real) user id of the
process.

• geteuid: Returns effective user id of the
process. (Recall: Setuid bit for executables.)

• No error exit for either function.

14–5

Additional notes about processes:

• A child process inherits parent’s privileges and
resources such as files.

• The child process competes for the CPU along
with the parent.

• There are situations where the parent waits
for the child to complete (e.g. shell).

System call wait:

pid_t wait (int *estatus);

• Headers: <sys/types.h> and <sys/wait.h>.

• Causes the caller to wait until some child ter-
minates – one form of synchronization.

• Normally, returns the pid of the child that ter-
minated.

• If no child is waiting, the call returns -1 and
errno has the value ECHILD.

14–6

• If estatus is NULL, it is ignored; otherwise,
the exit status of terminating child is returned
in *estatus. (The exit status is 0 if the child
terminated normally; nonzero otherwise.)

Program Example: Handout 14.2.

System call waitpid:

pid_t waitpid (pid_t pid,

int *estatus,

int options);

• Headers: Same as wait.

• Causes the caller to wait until the child with
id given by pid terminates.

• If pid is -1 and options is 0, then waitpid

behaves exactly like wait.

• Most common value for options is WNOHANG.
In that case, if the specified child is still run-
ning, the call returns 0 and the caller does not
wait.

14–7

• Helpful when the parent process wants to per-
form some actions while the specified child is
running.

Reading assignment: Program example on

page 107 of [HGS].

Two special processes:

• The swapper process: Pid = 0; the swapper
is its own parent.

• The init process: Pid = 1; its parent is the
swapper process.

Orphan processes:

• A process which is still running but whose par-
ent has terminated.

• Doesn’t stay an orphan for too long.

• Orphan processes are “adopted” by the init

process.

14–8

Zombie processes:

• Dictionary meaning of “zombie”: One who
seems more dead than alive.

• A process which has terminated before its
parent had a chance to wait for it.

Example:

if ((cid = fork()) == 0) {

-- code for child --

}

else {

-- parent --

-- many lines of code--

c = wait(&status);

.

.

}

• Child may exit before parent reaches the wait
call; child becomes a zombie.

14–9

Why are zombies bad?

• Kernel maintains a process table, with one en-
try per process. (The size of this table is the
maximum number of processes allowed in the
system.)

• When a process P terminates, the exit status
of P must be conveyed to P’s parent.

• The parent may be going through a long pro-
gram before waiting for the child.

• So, some information about process P must
be kept in the process table even though P
can’t execute anymore.

• The process table entry given to P can’t be
given to another process until P is “completely
dead” (i.e., the exit status of P has been given
to P’s parent).

The exec family of system calls:

• Used in conjunction with fork to create pro-
cesses executing different code.

14–10

• Traditional way: Child executes an appropri-
ate exec call.

• Two sets of calls: execl and execv.

• execl: Used when the command line argu-
ments are known at compile time and can be
passed as a list.

• execv: Used to command line arguments as
an array (similar to argv[]).

• Commonly used forms: execlp and execvp.

• The ’p’ suffix indicates that the call will search
the directories in the PATH environment
variable.

System calls execlp and execvp:

int execlp(const char *prog,

const char *arg0, ...,

const char *argn, NULL);

int execvp(const char *prog,

const char *argv[]);

14–11

• Header: <unistd.h>.

• Note that execlp has a variable number of
arguments; the NULL pointer indicates the end
of the list.

• Using exec is different from usual function calls;
in particular, a call to exec should not return
if there are no errors.

Program examples: Handouts 14.3 and 14.4.

14–12

