
Processes and Pipes

Ref: Chapter 7 of [HGS].

Pipe Mechanism in Unix:

• Allows a user to build complex commands by
chaining together simple commands.

• Eliminates the need for temporary files.

Example 1: The following sequence of shell com-

mands counts the number of lines containing the
string "this" in the file "file.txt".

% grep this file.txt > temp

% wc -l temp

% rm temp

Example 1 using pipes:

% grep this file.txt | wc -l

16–1

Notes:

• Pipe: A first-in first-out (FIFO) buffer with a
“read-end” and a “write-end”.

• To make the pipe in Example 1 to work:

– The stdout for the grep program should
be redirected to the write-end of pipe.

– The stdin of the wc program should be
redirected to the read-end of pipe.

General Information about Pipes:

• There is no external file associated with a pipe;
it is just a temporary internal buffer of limited
capacity.

• The kernel blocks a process which tries to read
from an empty pipe or which wants to write
to a full pipe.

• The kernel also provides the synchronization
needed among processes that use a pipe.

16–2



• A pipe can be used only between a process
which created the pipe and the children of that
process. (This restriction does not apply to
“named pipes”.)

System call pipe:

int pipe (int filedes[2]);

• Header: <unistd.h>.

• filedes: A two-element array of type int;
the function fills in the two entries of
this array.

• Each array element stores a file descriptor.

• filedes[0]: File descriptor for the read-
end of the pipe (i.e., the descriptor to be used
with the read system call).

• filedes[1]: File descriptor for the write-
end of the pipe. (i.e., the descriptor to be
used with the write system call).

• The function returns -1 if the call fails.

16–3

Sample code segment:

int pd[2];

char x[10], y[10];

if (pipe(pd) == -1) {

fprintf(stderr, "Failed pipe.\n");

exit(1);

}

strcpy(x, "012345678");

write(pd[1], x, 10);

read(pd[0], y, 10);

printf("%s\n", y);

System call dup2:

int dup2 (int fd1, int fd2);

• Header: <unistd.h>.

• An existing file descriptor fd1 is duplicated as
file descriptor fd2.

• If the file (or device) corresponding to descrip-
tor fd2 is open, then it is closed.

• The duplication and closing are carried out as
an atomic step.

16–4



Using dup2 for Redirection:

(a) Redirecting stdin:

int fd;

if ((fd = open("x.dat", O_RDONLY))

== NULL) {

.

.

}

if (dup2(fd, STDIN_FILENO) == -1) {

.

.

}

close(fd); /* Important! */

• At the end of the above segment (assuming
that dup2 call was successful), all read oper-
ations to stdin will be redirected to the file
"x.dat".

16–5

(b) Redirecting stdout to a Pipe:

int pd[2];

if (pipe(pd) == -1) {

.

.

}

if (dup2(pd[1], STDOUT_FILENO)

== -1) {

.

.

}

close(pd[1]); /* Important! */

• At the end of the above segment (assuming
that dup2 call was successful), all write op-
erations to stdout will be redirected to the
write-end of the pipe.

Program example: Handout 16.1.

Reading assignment: Program on pages

170–171 of [HGS].

16–6



Non-blocking Read/Write with Pipes:

• Recall: Read/write operation on a pipe may
block the process.

• The fcntl system call can be used to make
read/write non-blocking.

Sample code segment:

if (fcntl(pd[0],F_SETFL, O_NONBLOCK)

== -1) {

.

.

}

• Non-blocking read from a pipe: If pipe is empty,
the read call returns immediately with value
-1 and errno is set to EAGAIN.

• Non-blocking write to a pipe: If pipe is full,
the write call returns immediately with value
-1 and errno is set to EAGAIN.

Program Example: Handout 16.2.

16–7

Named Pipes:

• Unnamed pipes can only be used between pro-
cesses which have an ancestral relationship.

• Unnamed pipes are temporary; they need to
be created every time and are destroyed when
the corresponding processes exit.

• Named pipes (FIFOs) overcome both of these
limitations.

System call mkfifo:

int mkfifo (const char *path,

mode_t mode);

• Headers: <sys/types.h> and
<sys/stat.h>.

• path: Name of the FIFO created.

• mode: File permissions for the FIFO; will be
modified using umask.

• Returns -1 if the call fails and 0 otherwise.

16–8



Notes:

• The open system call is used to obtain a file
descriptor for a FIFO.

• Reading data from a FIFO and writing data to
a FIFO can be done using read and write

system calls.

• Non-blocking read/write on a FIFO can be
done by using O_NONBLOCK in the call to open.

Program Example: Handout 16.3.

Handling Multiple Pipes/FIFOs:

• A server may communicate with two more clients
through two or more separate pipes/FIFOs.

• At any time, data may be available from more
than one pipe/FIFO.

• The server may want to wait until data is avail-
able from at least one of the pipes/FIFOs.

• More general: Server may want to monitor a
set of file descriptors.

16–9

• System call select handles such situations.

Representing File Descriptor Sets:

• Usual bit representation for sets (one bit per
element).

• If a bit is 1 (i.e., the bit is ON), then the
process is “interested” in that file descriptor;
otherwise, the bit is 0 (OFF).

(a) Data Type fd set:

• To be used for representing and
manipulating a set of file descriptors.

• Header: <sys/time.h>

(b) Permitted Operations:

• Initialize all bits to 0.

void FD_ZERO (fd_set *f);

• Set a specific bit to 1.

void FD_SET (int fd, fd_set *f);

16–10



• Set a specific bit to 0.

void FD_CLR (int fd, fd_set *f);

• Check whether a specific bit is ON.

int FD_ISSET (int fd, fd_set *f);

Structure timeval:

• Definition:

struct timeval {

long tv_sec; /* Seconds. */

long tv_usec; /* Micro-seconds. */

};

• Used in select system call to specify how
long the process should wait.

• The micro-seconds part can be used to specify
fraction of a second.

16–11

System call select:

int select (int nfds, fd_set *rfds,

fd_set *wfds,

fd_set *efds,

struct timeval *tout);

• Header: <sys/time.h>

• nfds: The set of file descriptors to be moni-
tored will be a subset of {0, 1, . . . , nfds−1}.

• For nfds, the symbolic constant FD SETSIZE

defined in <sys/time.h> may also be used.

• rfds: Pointer to the set of file descriptors
which should be monitored for reading.

• wfds: Pointer to the set of file descriptors
which should be monitored for writing.

• efds: Pointer to the set of file descriptors
which should be monitored for errors.

16–12



• tout:

– Pointer to the timeval structure.
(Memory for the structure must have been
allocated by the caller.)

– Specifies the timeout time.

– If this pointer is NULL, the call waits until
an event of interest occurs for any of the
file descriptors.

• The call to select returns 0 if timeout
occurs and -1 on error; otherwise, returns the
number of file descriptors for which events of
interest occurred.

• Important: The bit masks pointed to by
rfds, wfds and efds are all modified by the
call. (So, a user should keep a copy of the
original masks.)

Program Example: Handout 16.4.

16–13


