
More on Processes

Ref: Chapter 5 of [HGS].

Additional Program Examples:

• A child process that prints its arguments
(Handout 15.1).

• A simple version of the system library
function of Unix (Handout 15.2).

Shared File Descriptors:

• Recall: Parent and child share file descriptors.

• Changes made to the file by the parent are
visible to the child and vice versa.

• Example: Handout 15.3.

System call fcntl:

int fcntl(int fd, int cmd, ...);

• Performs a variety of control functions associ-
ated with open files.

15–1

• Headers: <sys/types.h>, <unistd.h> and
<fcntl.h>.

• fd: File descriptor of an open file.

• cmd: Specifies the function to be performed.

• The number of parameters depends on cmd.
(Some calls may have just two parameters.)

• Returns -1 if there is an error.

Example 1:

• The value F_GETFL for cmd can be used to
obtain the current file status flags.

• The value returned by fcntl must be bitwise
anded with O_ACCMODE to obtain the
status flags.

Sample code segment:

if ((x = fcntl(fd, F_GETFL)) != -1) {

if ((x & O_ACCMODE) == O_RDWR)

printf("Status: read-write.\n");

}

15–2



Example 2:

• The value F_SETFL for cmd can be used to
change the current file status flags.

• Some changes may not be permitted.

Sample code segment:

if (fcntl(fd, F_SETFL, O_APPEND)

== -1) {

fprintf(stderr, "Failure.\n");

}

Example 3:

• The value F_SETFD for cmd can be used to
turn on (or off) the “close-on-exec” (COE)
flag for a file.

• If this flag is on, then the file is closed when
any member of the exec family is invoked.

15–3

Sample code segment:

if ((fd = open("d.dat", O_RONLY))

== -1) {

fprintf(stderr, "Error.\n");

exit(1);

}

if (fcntl(fd, F_SETFD, 1) != -1) {

printf("COE flag is on.\n");

}

System call exit:

void exit(int status);

• Terminates a process.

• Header: <stdlib.h>,

• status: Value of exit status to be given to
parent.

• Convention: Exit status = 0 for a normal exit
and non-zero for an error exit.

15–4



• Some actions performed by exit:

– Invokes other functions (exit handlers)
registered using the atexit routine.

– Closes all open files.

– Restarts a waiting parent.

Library function atexit:

int atexit(void (*f)(void));

• Header: <stdlib.h>,

• The parameter is a function pointer.

• “Registers” the specified function f as an exit
handler.

• Returns -1 if the specified function can’t be
registered. (However, errno is not set.)

• The function to be registered cannot have any
parameters.

• The same function may be registered multiple
times. (Generally, a total of up to 32 items
can be registered.)

15–5

• Functions are invoked in an order which is the
reverse of the registration order.

Program example: Handout 15.4.

A Simple Shell:

• Simpler version of the program discussed in
Section 5.9 of [HGS].

• Shows the main part of the shell.

• Program repeats the following steps:

(a) Produce prompt.

(b) Read command.

(c) Parse command to obtain parameters.

(d) Fork a child process and use exec to
execute the command.

(e) Wait for the child to exit.

• Program exits when the user types CTRL-D.

• Doesn’t support background processes, I/O
redirection, etc.

• Details: Handout 15.5.

15–6


