Assemblers|

Ref: Chapter 2 of [Beck].

Basic function:

— = Assenbler -
Sour ce Machi ne code

e Precursor to compilers.

Conventions in SIC:

e Lines starting with "." are comments.

e Fields in a statement: label (optional), op-
code, operands (if needed) and comment
(optional).

e Assembler directives (or pseudo opcodes): START,

END, BYTE, WORD, RESB, RESW, BASE,
NOBASE.

2-1

e Indirect addressing indicated by ’Q’:
JEQ ORADDR

e Immediate operands are indicated by ’#’:

LDA #50

e BASE directive used to indicate base + dis-
placement mode.

LDB #LEN
BASE LEN

e NOBASE directive ends base + displacement
mode. (The BASE directive is in effect for the
segment between BASE and NOBASE direc-

tives.)

e 4-byte instruction specified by preceding the
opcode with >+,

+LDA MEM

2-2

Assembling a SIC program:

Note: Line numbers shown below are for con-
venience; they are not part of the program.

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)

MCHRS
FIRST
MOVECH

STR1
STR2
ZERO
ELEVEN

Observations:

START
LDX
LDCH
STCH
TIX
JLT
RSUB
BYTE
RESB
WORD
WORD
END

1000
ZERO
STR1,X
STR2,X
ELEVEN
MOVECH

C’TEST STRING’
11

0

11

FIRST

e Use of Location Counter (LC).

e Two pass assembly (to allow forward referenc-

ing).

e Symbol Table (ST) used for labels.

2-3

Summary of actions:

Pass 1:

e Assign addresses to instructions using LC.
e Build Symbol Table.
e Process pseudo opcodes.

e Produce partial machine code. (This may also
be done in Pass 2.)

Pass 2:

e Complete assembly of instructions (resolving
forward references).

e Qutput object program and listing to appro-
priate files.

e Generate information for linker (to be seen
later).

2-4

Pseudocode for Passes 1 and 2:

e Figures 2.4(a) and 2.4(b) of text: Reading
assignment.

Tables Used:

(A) Symbol Table:

e Each entry has a symbol and its LC value.
e Searched in both Pass 1 and Pass 2.
e Dynamic table (grows in Pass 1).

e Efficient implementation essential.

(B) Machine Opcode Table (MOT):

e Each entry has a mnemonic, binary opcode
and instruction length.

e Must be searched in Pass 1.

e Static table (contents don't change).

Format of object code:

e Header record: Contains program name, start-
ing address and length (in bytes).

e Text record: Contains starting address for the
code in the record, length of the code and the
code itself.

e End record: Contains the address of the first
executable instruction in the object program.

Modifications for SIC/XE:

(1) Relative Addressing: Can be used only

with 3-byte instructions. (Assembler must set b

and p bits appropriately.)

e Instructions may use base-relative or PC-relative
modes.

o [f BASE directive is in effect, assembler uses
that mode; otherwise PC-relative mode is used.

Exception: PC-relative mode may be used even
when BASE is in effect, if the required displace-
ment is negative.

2-6

Example:
LDB
BASE
JEQ
STA
NEXT LDA
LEN RESW
SAVE RESW

#LEN
LEN

<--—- SIC/XE code
NEXT

SAVE

VAL

<---- SIC/XE code

1
1

e For the JEQ instruction, PC-relative address-
ing is used even though BASE directive is in

effect.

e For the STA instruction, base-relative address-

ing is used.

2-7

Note: Assembler produces an error message if
neither base-relative nor PC-relative modes can
be used. (How can this happen?)

Computing Displacement:

e PC-relative: Displacement may be positive or
negative. (Examples to be discussed in class.)

e Base-relative: ldea similar to PC-relative mode;
displacement cannot be negative.

Extended Addressing (3-byte Instructions):

e Immediate mode: Set the i bit to 1, n bit
to 0 and store the operand itself in the 12-bit
displacement field.

e Indirect mode: Set the i bit to 0, n bit to 1;

store the displacement of the operand in the
12-bit field.

2-8

Handling 4-byte Instructions:

e Opcode has the ’+’ prefix to indicate 4-byte
format.

e [he e bit must be set to 1.
e Bits b and p are 0.

e The address (or immediate operand value) is
stored in the least significant 20 bits.

e The i and n bits are set appropriately.

2-9

