
Assemblers (continued)

Program Relocation:

Example 1: Suppose the START directive in a
program for SIC specifies 100, the instruction

LDA THREE

has LC value = 103, and the symbol THREE
has LC value = 115. The assembled form of the
instruction (in hex) is 000073.

• The above instruction uses absolute addresses.

• Works correctly as long as the program starts
from location 100.

• Requirement too rigid in a multiprogramming

environment.

• Relocatable program: A program that
works correctly regardless of starting address.

• Assembler should produce relocatable object
code.

3–1

• Assembler assumes the starting address to be
zero.

• Assembler identifies parts of the object pro-
gram that need to be modified when the pro-
gram is relocated.

Modification Record:

• Each time the assembler produces an instruc-
tion with an address, a modification record is
produced.

• Each modification record contains

(a) Starting location of the address field to
be modified.

(b) Length of the address field (in say, bytes,
half-bytes or bits).

• Modification records are appended to the ob-
ject code.

Example 2: Relocatable translation for the in-
struction in Example 1.

3–2



• The object code produced is 00000F.

• Modification record: Starting location = 4
and Length = 15 (bits).

Relocation for SIC and SIC/XE:

• SIC: All instructions except RSUB and I/O in-
structions cause a modifier record to be writ-
ten.

• SIC/XE: Only 4-byte instructions may cause
a modifier record to be written.

Errors Detected by Assemblers:

• Undefined symbols. (These are usually indi-
cated at the end of the program listing.)

• Multiply defined symbols.

• Illegal opcode.

• Missing or extra operands.

• Relative addressing infeasible (SIC/XE).

3–3

Literals:

• Literal: Constant operand written as part of
the instruction.

Example:

LDA =C’PQR’

TD =X’05’

• Literals are different from immediate operands.

Example: The SIC/XE statement

LDA #112

will be assembled into the 3-byte instruction 010070
(hex). However, the statement

LDA =C’PQR’

is equivalent to

LDA LIT1

.

.

LIT1 BYTE =C’PQR’

3–4



• Assembler may create new (special) labels for
literals.

• Normally, a “literal pool” is created at the end
of a program.

• Assembler may choose to have the literal pool
at a different point (instead of at the end) to
allow PC-relative addressing.

• A special directive LTORG used for this
purpose.

Example:

LDA =C’PQR’

.

.

J NEXT

LTORG

.

.

NEXT LDB #80

• Some assemblers use a Literal Table to save
space for duplicate literals.

3–5

Symbol Defining Directives:

• EQU directive is useful in defining constants.

Example:

MAXADR EQU 65535

• Allows instructions such as

LDA #MAXADR

• Symbol Table can be used to handle such
constants.

Handling Expressions:

• Expressions may involve constants.

Example:

NREC EQU 200

RSIZE EQU 15

.

.

LOC RESW NREC*SIZE

3–6



• Expressions may also involve addresses.

Example:

STA START+2

• Expression evaluation needed in both passes.

– Values of expressions used with RESW and
RESB directives must be computed in
Pass 1.

– Values of expressions such as START+2 may
need to be computed in Pass 2.

• Expression evaluation algorithm:

1. Convert expression to postfix form.

2. Evaluate postfix expression using a stack.

One-Pass Assemblers:

• One-pass: Assembler makes only one physical
pass over the source file.

• Main problem: Forward references.

• Two types: Load-and-go and Object file as-
semblers.

3–7

(a) Load-and-Go Assemblers:

• Intermediate version and final object code are
kept in main memory.

• Program can begin execution right after as-
sembly.

• To handle forward references, modify Symbol
Table (ST).

• Each ST entry for a two-pass assembler has
symbol and LC value.

• Each ST entry for a one-pass assembler has:

– Symbol

– Defined? (Boolean flag)

– LC Value

– Pointer to the list of locations where the LC
value for the symbol is needed.

Outline of Algorithm: See Handout 3.1.

Example: To be discussed in class using the
program segment in Handout 3.2.

3–8



(b) Object File Assemblers:

• Object code bytes written out to the file are
“unavailable” for patching.

• Patching is done at run time (by the loader).

• As in load-and-go assemblers, use the modi-
fied symbol table and store forward references
as linked lists.

• When a symbol gets defined, output a text
record for each forward reference of the sym-
bol using the list.

Example: To be discussed in class using the
program segment in Handout 3.2.

3–9

Multi-pass Assemblers:

• Two passes may not be enough.

Example:

ALPHA EQU BETA

DELTA EQU ALPHA

.

.

ARRAY RESW ALPHA

.

.

DELTA EQU 24

• Multi-pass assemblers are not common.

– Assembly takes more time.

– Handling ST requires additional overhead.
(A symbol may appear in the label field
many times.)

– Such programs are more difficult to under-
stand.

3–10


