
Table Organization Methods

• A variety of (large) tables used by assemblers
(and compilers).

• Efficiently maintaining tables is important.

• Dictionary: A data structure that efficiently
supports insertion, deletion and search
operations.

• Many ways of implementing dictionaries are
known.

I. Linked Lists:

• Each node stores one row of table. (List is not
necessarily in order.)

• Simple method – easy to insert a new table
entry.

• Search is slow. (For a list with n nodes, on
the average, n/2 nodes will be encountered
during search.)

• Suitable for small tables.

4–1

II. Self-organizing Lists:

• Small modifications to sequential search to
improve average search time.

• Rely on “program locality”. (Each phase of a
program tends to reference a small collection
of symbols.)

• Idea: Keep the more frequently accessed
entries at the beginning of the list.

• Several heuristics are known.

(a) Move-to-Front heuristic:

• When a symbol is referenced, move the corre-
sponding node to the front of the list.

• Average number of nodes during a search is
≈ 2n/ log2 n.

• Better than sequential search as n becomes
larger.

4–2



(b) Transpose heuristic:

• When a symbol is referenced, exchange the
corresponding node with its predecessor (if one
exists) in the list.

• Performance in practice similar to that of
Move-to-Front.

(c) Move-Ahead-k heuristic:

• When a symbol is referenced, it is moved ahead
in the list by k positions.

• Generalizes Move-to-Front and Transpose
heuristics.

• Difficult to choose an appropriate value of k.

• Value of k is generally chosen as a percentage
of the number of nodes in the list.

(d) Count heuristic:

• Add a count field to each node.

• When a node is inserted into the list, set the
count to 1.

4–3

• When a symbol is referenced, increment the
count by 1.

• Maintain list in non-increasing order of count.

• Additional time overhead compared to the other
two heuristics.

• Search performance is not significantly better.

III. Ordered Tables:

• Search time can be improved (to O(log2 n))
using a sorted table.

• Good method for static tables; such tables
need to be sorted just once.

• Symbol Tables used by two-pass assemblers
can be sorted at the beginning of Pass 2.

IV. Binary Search Trees:

• Suitable for dynamic tables.

4–4



• Each node of the tree has

– Data (symbol, LC value, etc.)

– Pointer to left child.

– Pointer to right child.

• For each node containing symbol X:

– Symbols of all the nodes in the left subtree
precede X in sorted order.

– Symbols of all the nodes in the right subtree
follow X in sorted order.

• Tree is “balanced”; for a tree with n nodes,
the height is O(log2 n).

• Insert, delete and search operations can be
done in O(log2 n) time.

• Sorted order of symbols can be obtained by
an inorder traversal of the tree.

• Rebalancing needed after insertions and dele-
tions: time overhead.

• Two pointers per node: space overhead.

4–5

IV. Hash Tables:

• Most commonly used method in assemblers
and compilers.

• Simple to implement; good performance in
practice.

• Idea: Reduce search time by performing a
small amount of computation on the key value
(i.e., the string corresponding to the symbol).

• Hash Table (HT): Array of pointers.

• Hash Function (h): Given a key, computes
an index into HT.

Example: To be presented in class. (See also
Handout 4.1.)

• Collision: Hash function produces the same
index value for two different keys. (Collisions
can’t be avoided in practice.)

• Chaining: For each index i, keys that hash
to i are kept in a linked list pointed to by
HT[i].

4–6



Inserting a symbol X:

Note: Assumes that symbol X is not in HT.

1. Let t = h(X).

2. Insert the node for X in the list pointed to by
HT[t].

Searching for a symbol X:

1. Let t = h(X).

2. Search for X in the list pointed to by HT[t].

Performance of Hashing:

• If HT has k pointers, a good hash function
should distribute the n keys so that each list
has ≈ n/k keys.

• After computing the hash function, the se-
quential search will only examine n/k nodes.

• Faster than sequential search by a factor of k.

• Studies have shown that k should be a prime
number for good performance.

4–7


