
Final Remarks on Assemblers

Program Blocks:

• So far: Entire program treated as one unit;
assembler produces one block of object code.

• Blocks: Segments of code that can be rear-
ranged by the assembler.

Example: See Part I of Handout 5.1.

• Programmers may want to keep program and
data segments together.

• May need to use 4-byte instructions.

• Instructions may be shortened by moving a
block to the end.

• New assembler directive: USE

Example: See Part II of Handout 5.1.

5–1

• SIC/XE: Programs may have several named

blocks and one default (unnamed) block.

• Assembler rearranges blocks so that the de-
fault block appears as a unit first; each named
block follows.

Modifications to the Assembler:

• Maintain a separate location counter (LC) for
each block. (LC value for each block starts at
zero.)

• Save value of current LC when switching to
another block; restore the LC value when switch-
ing back to the default block.

• Each entry of the Symbol Table has Symbol,
Block name and LC value of the symbol within
the block.

• At the end of Pass 1, length of each block is
known. Assembler can assign a starting ad-
dress for each block.

• Block Address Table (BAT): Each entry con-
tains name of a block and its starting address.

5–2



• Suppose symbol X appears in block B, and the
LC value of X within B is L. Then

Address of X = Starting address of B + L

Control Sections:

• Modules that can be separately assembled;
usually placed in separate files.

• Executable version of the program created by
“linking” together all the separately assembled
modules.

• New assembler directive: CSECT

Example:

MAIN START 0 #Main prog.

.

.

+JSUB SORT

+JSUB MAX

.

.

5–3

SORT CSECT #Subroutine.

.

.

RSUB

MAX CSECT #Subroutine.

.

.

RSUB

Modifications to the Assembler:

• Assembler needs to know that SORT and MAX

are in a different control section.

• New assembler directive: EXTREF

Example:

EXTREF SORT,MAX

• SIC/XE statements referencing external sym-
bols must use 4-byte format.

• Assembler cannot fill the address part of such
instructions. (It will be done by the linker.)

5–4



• Assembler must produce an External Refer-

ence Table (ERT).

• Each entry of ERT has a symbol and the rel-
ative address where the address of the symbol
is needed.

• Each control section may have an ERT.

Example: See Handout 5.2.

• New assembler directive: EXTDEF.

Example:

EXTDEF SORT,MAX

• Assembler must produce an External Defi-

nition Table (EDT).

• Each entry of EDT has a symbol and the rel-
ative address where the symbol is defined.

• Each control section may have an EDT.

Example: See Handout 5.2.

5–5

Differences between ERT and EDT:

• A symbol may appear two or more times in an
ERT. No symbol can appear more than once
in an EDT.

• A symbol may appear in two or more ERTs.
No symbol may appear in more than one EDT.

Algorithms for creating ERT and EDT:

– See Handout 5.3.

List of Tables used by an Assembler:

• Symbol Table (ST)

• Machine Opcode Table (MOT)

• Block Address Table (BAT)

• External Reference Table (ERT)

• External Definition Table (EDT)

Reading Assignment: Section 2.5 of [Beck].

5–6


