
Signals and Signal Handling

Ref: Chapter 6 of [HGS].

What is a signal?

• A “one-word” message.

• Examples: Green light, stop sign, a referee’s
gestures in a game.

• A primitive form of inter-process communica-
tion in Unix.

• The signal is itself the message.

Signals at the shell command level:

• CTRL-C to interrupt a command. (This sends
a signal to the command that is running as
well as the shell process.)

• CTRL-Z to stop a process.

• The kill command.

17–1

Where can signals come from?

• User.

• Kernel: Sends a signal to a process

(a) if the process does something “bad” (e.g.
bus error, floating point exception, segmen-
tation fault) or

(b) to notify the process of certain events
(e.g. an alarm, resizing a window) or

(c) when the system is being shut down.

• Other processes: A process may send the “kill”
signal to another.

Terminology:

• Synchronous signal: Caused by something
done by a process (bus error, etc.)

• Asynchronous signal: Caused by events out-
side the process (e.g. CTRL-C).

17–2



What can a process do with a signal?

• Accept the default action (usually abnormal
termination).

• Ignore the signal (i.e., wear a ”signal proof
vest”).

• “Catch” the signal (i.e., execute a
signal handler).

Some signals:

• Each signal is a symbolic constant denoting
an integer value.

• Complete list on pages 127–130 of [HGS].

#define SIGHUP 1

#define SIGINT 2

#define SIGQUIT 3

#define SIGILL 4

#define SIGFPE 8

#define SIGKILL 9

#define SIGSEGV 11

#define SIGTERM 15

17–3

Notes:

• For some signals (e.g. SIGUSR1 and SIGUSR2),
the default action is to ignore the signal.

• Signals SIGKILL and SIGSTOP cannot be
ignored or caught.

Signal sets:

(a) Data structure:

• sigset t defined in <signal.h>.
(This header is needed for all signal-related
functions.)

• Guaranteed to be large enough to hold all the
system defined signals.

• A signal set is used to specify which signals
should be blocked from delivery to a process.

17–4



(b) Permitted operations:

• Create an empty signal set.

int sigemptyset (sigset_t *sg);

• Create a signal set containing all the signals.

int sigfillset (sigset_t *sg);

• Add a signal to a signal set.

int sigaddset (sigset_t *sg,

int signo);

• Delete a signal from a signal set.

int sigdelset (sigset_t *sg,

int signo);

• All the four functions above return 0 if no error
occurred and -1 otherwise.

• Check membership of a signal in a signal set.
(Returns 1 if true and 0 if false.)

int sigismember(const sigset_t *sg,

int signo);

17–5

Sample code segment:

#include <signal.h>

sigset_t set1, set2;

sigemptyset(&set1);

sigaddset(&set1, SIGINT);

sigaddset(&set1, SIGILL);

sigfillset(&set2);

sigdelset(&set2, SIGHUP);

sigdelset(&set2, SIGSEGV);

if (sigismember(&set2, SIGSEGV))

printf("Yes\n");

else

printf("NO\n");

17–6



Blocking a signal:

• Putting a signal on hold while another signal
is being handled.

• Signals can’t be “stacked” (i.e., only one
signal of each type can be outstanding at any
time).

• Signals may be lost.

System call sigaction:

int sigaction (int signo,

const struct sigaction *act,

struct sigaction *oact);

• Header: <signal.h>.

• Parameter act specifies how the signal given
by signo is handled.

• Fills in the structure pointed to by oact with
the current setting for the signal.

• Returns 0 if successful and -1 otherwise.

17–7

Structure sigaction:

struct sigaction {

void (*sa_handler) (int);

void (*sa_sigaction) (int,

siginfo_t *, void *);

sigset_t sa_mask;

int sa_flags;

};

(a) Data member sa handler:

• Function pointer – specifies action to be taken
for a signal.

• Possible values: SIG DEF, SIG IGN or
the name of a user-defined function. (This
function will be executed when the specified
signal is received.)

• SIG IGN cannot be used for SIGSTOP

or for SIGKILL.

• The user-defined function gets the signal value
as the value parameter.

17–8



(b) Data member sa sigaction:

• Also a function pointer. (The corresponding
function gets additional inputs.)

• Only one of sa handler and
sa sigaction may be used. (The data
member sa flags can be used to specify which
one is used.)

• Not commonly supported; it is best to avoid
using this data member.

(c) Data member sa mask:

• Specifies the set of signals to be blocked when
the current signal is handled.

• Normally, when the signal handler is entered,
the current signal is also added to the set.

(d) Data member sa flags:

• Some possible values are:

(i) SA RESETHAND: Reset the handler to
SIG DFL upon return from the handler.

17–9

(ii) SA NODEFER: Turn off automatic block-
ing of the signal being handled.

(iii) SA RESTART: Restart system calls upon
return from the handler.

(iv) SA SIGINFO: Use the function speci-
fied for sa sigaction as the signal han-
dler (rather than sa handler).

Program Example: Handout 17.1.

Other actions:

(a) To ignore SIGINT:

act.sa_handler = SIG_IGN;

(b) To restore previous action:

static struct sigaction act, oact;

/* Save old action. */

sigaction(SIGINT, NULL, &oact);

17–10



/* New action. */

act.sa_handler = SIG_IGN;

sigaction(SIGINT, &act, NULL);

.

.

/* Restore old action. */

sigaction(SIGINT, &oact, NULL);

(c) To exit gracefully when interrupted:

– Define an appropriate function and specify
that function as sa handler.

17–11


