
Discussion on Files (continued)

Ref: Chapter 3 of [HGS].

User and Group IDs:

• Each user is given an ID (integer) called uid.
(All system programs use uid instead of the
user’s login name.)

• The special uid 0 (zero) is given to the
super user (root).

• Each user also belongs to at least one group.
Each group has an ID (integer) called gid.

• When a file is created, the uid and the gid

of the user who created the file are stored as
part of the information regarding the file.

More on file modes:

• Recall: Permissions (modes) can be specified
as octal values (for user, group and other).

12–1

• Symbolic form also possible (constants defined
in <sys/stat.h>):

S_IRUSR S_IWUSR S_IXUSR S_IRWXU

S_IRGRP S_IWGRP S_IXGRP S_IRWXG

S_IROTH S_IWOTH S_IXOTH S_IRWXO

Sample code segment:

mode_t fmode;

int fd;

fmode = S_IRWXU | S_IRGRP | S_IROTH;

fd = open("file", O_WRONLY, fmode);

if (fd == -1) {

fprintf("Error in open\n");

exit(1);

}

Permission bits for executable files:

• Three extra permission bits, usually for
executable files.

– Set uid on execution:

04000 S_ISUID

12–2

– Set gid on execution:

02000 S_ISGID

– Save-text-image (“sticky bit”):

01000 S_ISVTX

Purpose of set uid bit:

• If S_ISUID permission for a file is set, the
effective uid of the process executing the file
is the uid of the owner of the file (rather than
the uid of the user who started the execution).

• The process is given file access privileges of
the file owner.

Example: The passwd program.

• Program used to change a user’s password.

• Changing password requires permission to write
to a file containing password information.
(Usually, only root has permission to write to
this file.)

• The executable file for the program is owned
by root but has its S_ISUID permission set.

12–3

• When a normal user runs the program, the
program is given the effective user id of the
owner (root). So, entries in the password file
can be modified.

Other examples: The following programs also
(generally) have their S_ISUID permission set.

• Program to print files (usual name: lpr).

• Programs that update files containing top scorer
information for some games.

Set gid: Similar to set uid.

Sticky bit:

• Original purpose: An executable with the sticky
bit set is saved in the swap area of the disk (so
that it can loaded into memory quickly).

• With virtual memory, this bit is redundant for
executable files.

12–4

File creation mask:

• When a file is created, permissions specified
by mode are always modified using the 9-bit
quantity called umask.

• Generally, value of umask is specified in a
start up file such as .cshrc.

• Value can be found using the shell command
umask. (Usual default value: 022)

• Actual mode used for the file is given by

given_mode & ~umask

• Setting umask to 022 prevents the open sys-
tem call from ever creating a file that can be
written by anyone other than the owner.

• System call for umask:

mode_t umask (mode_t newmask);

• The call changes umask to the value specified
by the parameter and returns the old value of
umask.

12–5

• Reading assignment: Program example
on page 45 of [HGS].

Additional comments regarding open:

• The call to open checks whether the specified
access flags satisfy the file permissions.

• If not, the call returns -1 and errno is set to
EACCES (“permission denied” error).

• Special flag O_EXCL prevents creation of file
if the file already exists.

• If flag is given as

O_WRONLY | O_CREAT | O_EXCL

and the file exists, open fails and errno is set
to EEXIST.

System call chmod:

int chmod (const char *pathname,

mode_t newmode);

12–6

• Can be used to change the permission bits of
a file (including the special permission bits for
executable files).

• The parameters represent the file name and
the new permission bits respectively.

• The call succeeds only when issued by the
owner of the file or the superuser (root).

• The value of umask is not used by chmod.

• Returns 0 if successful and -1 otherwise.

System call chown:

int chown (const char *pathname,

uid_t newowner,

gid_t newgroup);

• Can be used to change the owner and the
group of a file.

• The parameters represent the file name, the
uid of the new owner and the gid of the new
group respectively.

12–7

• If the newowner parameter is -1, the owner
is not changed. A similar comment applied to
the newgroup parameter.

• Caution: Once the owner is changed, the
change cannot be undone by the previous owner.

• The call succeeds only when issued by the
owner of the file or the superuser (root);
otherwise, errno is set to EPERM.

• Returns 0 if successful and -1 otherwise.

Hard Links and Symbolic Links:

• Link: A mechanism that allows a file to be
referred to by different names.

• Important: There is only one copy of the file;
the links refer to the same copy.

• Useful in allowing different software teams to
work together.

• Shell command for creating a hard link:

% ln oldfile secondname

12–8

• Shell command for creating a symbolic link:

% ln -s oldfile anothername

• Caution: If a file is deleted, the symbolic links
for the file become dangling pointers.

Hard and Symbolic links: Differences

• A normal user cannot create a hard link to a
directory; a user may create a symbolic link to
a directory.

• A hard link must be to a file within the same
file system. A soft link may go across
file systems.

• The number of hard links to a file is stored as
part of the information regarding the file. The
system does not store information about the
number of symbolic links.

12–9

System call link:

int link (const char *original_path,

const char *new_path);

• Creates a hard link to an existing file.

• The parameters represent the name of an ex-
isting file and that of the link respectively.

• The link may be in a different directory.

• Returns 0 if successful and -1 otherwise.

Some comments regarding unlink:

• The call to unlink only removes the link named
in the call.

• The number of hard links to the file is decre-
mented by 1.

• The disk space allocated to the file is reclaimed
only if both of the following conditions hold:

(a) The hard link count has dropped to zero.

(b) No process has the file open.

12–10

System call symlink:

int symlink (

const char *real_name,

const char *sym_name);

• Creates a symbolic link to an existing file.

• The parameters represent the name of an ex-
isting file and that of the symbolic link respec-
tively.

• The link may be in a different file system.

• Returns 0 if successful and -1 otherwise.

System calls stat and fstat:

int stat (const char *pathname,

struct stat *buf);

int fstat (int filedes,

struct stat *buf);

• Allow us to obtain information about files.

12–11

• In both calls, the second parameter is a pointer
to the buffer where information about the file
can be stored. (The space for the buffer must
have been allocated before the call.)

• stat: The first parameter represents the name
of an existing file.

• fstat: The first parameter represents the
file descriptor of an open file.

• Returns 0 if successful and -1 otherwise.

Data Members of struct stat: Handout 12.1.
(See also page 54 of [HGS].)

Program example: Handout 12.2. (Study also

the example on pages 56–57 of [HGS].)

12–12

